The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme

Gould and Lewontin's oft-cited paper criticising what they see as the over-reliance on adaptationist explanations of many biologists.

Submitted by Choccy on December 30, 2008

"The Spandrels of San Marco and the Panglossian Paradigm: A Critique Of The Adaptationist Programme," Proceedings Of The Royal Society of London, Series B, Vol. 205, No. 1161 (1979), Pp. 581-598.

An adaptationist programme has dominated evolutionary thought in England and the United States during the past forty years. It is based on faith in the power of natural selection as an optimizing agent. It proceeds by breaking an organism into unitary "traits" and proposing an adaptive story for each considered separately. Trade-offs among competing selective demands exert the only brake upon perfection; non-optimality is thereby rendered as a result of adaptation as well. We criticize this approach and attempt to reassert a competing notion (long popular in continental Europe) that organisms must be analyzed as integrated wholes, with Baupläne so constrained by phyletic heritage, pathways of development, and general architecture that the constraints themselves become more interesting and more important in delimiting pathways of change than the selective force that may mediate change when it occurs. We fault the adaptationist programme for its failure to distinguish current utility from reasons for origin (male tyrannosaurs may have used their diminutive front legs to titillate female partners, but this will not explain why they got so small); for its unwillingness to consider alternatives to adaptive stories; for its reliance upon plausibility alone as a criterion for accepting speculative tales; and for its failure to consider adequately such competing themes as random fixation of alleles, production of non-adaptive structures by developmental correlation with selected features (allometry, pleiotropy, material compensation, mechanically forced correlation), the separability of adaptation and selection, multiple adaptive peaks, and current utility as an epiphenomenon of nonadaptive structures. We support Darwin's own pluralistic approach to identifying the agents of evolutionary change.

1. Introduction

The great central dome of St. Mark's Cathedral in Venice presents in its mosaic design a detailed iconography expressing the mainstays of Christian faith. Three circles of figures radiate out from a central image of Christ: angels, disciples, and virtues. Each circle is divided into quadrants, even though the dome itself is radially symmetrical in structure. Each quadrant meets one of the four spandrels in the arches below the dome. Spandrels-the tapering triangular spaces formed by the intersection of two rounded arches at right angles are necessary architectural byproducts of mounting a dome on rounded arches. Each spandrel contains a design admirably fitted into its tapering space. An evangelist sits in the upper part flanked by the heavenly cities. Below, a man representing one of the four biblical rivers (Tigris, Euphrates, Indus, and Nile) pours water from a pitcher in the narrowing space below his feet.

The design is so elaborate, harmonious, and purposeful that we are tempted to view it as the starting point of any analysis, as the cause in some sense of the surrounding architecture. But this would invert the proper path of analysis. The system begins with an architectural constraint: the necessary four spandrels and their tapering triangular form. They provide a space in which the mosaicists worked; they set the quadripartite symmetry of the dome above.

Such architectural constraints abound, and we find them easy to understand because we do not impose our biological biases upon them. Every fan-vaulted ceiling must have a series of open spaces along the midline of the vault, where the sides of the fans intersect between the pillars. Since the spaces must exist, they are often used for ingenious ornamental effect. In King's College Chapel in Cambridge, for example, the spaces contain bosses alternately embellished with the Tudor rose and portcullis. In a sense, this design represents an "adaptation," but the architectural constraint is clearly primary. The spaces arise as a necessary by-product of fan vaulting; their appropriate use is a secondary effect. Anyone who tried to argue that the structure exists be-cause the alternation of rose and portcullis makes so much sense in a Tudor chapel would be inviting the same ridicule that Voltaire heaped on Dr. Pangloss: "Things cannot be other than they are... Everything is made for the best purpose. Our noses were made to carry spectacles, so we have spectacles. Legs were clearly intended for breeches, and we wear them." Yet evolutionary biologists, in their tendency to focus exclusively on immediate adaptation to local conditions, do tend to ignore architectural constraints and perform just such an inversion of explanation.

As a closer example, recently featured in some important biological literature on adaptation, anthropologist Michael Harner has proposed (1977) that Aztec human sacrifice arose as a solution to chronic shortage of meat (limbs of victims were often consumed, but only by people of high status). E. O. Wilson (1978) has used this explanation as a primary illustration of an adaptive, genetic predisposition for carnivory in humans. Harner and Wilson ask us to view an elaborate social system and a complex set of explicit justifications involving myth, symbol, and tradition as mere epiphenomena generated by the Aztecs as an unconscious rationalization masking the "real" reason for it all: need for protein. But Sahlins (1978) has argued that human sacrifice represented just one part of an elaborate cultural fabric that, in its entirety, not only represented the material expression of Aztec cosmology, but also performed such utilitarian functions‚as the maintenance of social ranks‚and systems of tribute among cities.

We strongly suspect that Aztec cannibalism was an "adaptation" much like evangelists and rivers in spandrels, or ornamented bosses in ceiling spaces: a secondary epiphnomenon representing a fruitful use of available parts, not a cause of the entire system. To put it crudely: a system developed for other reasons generated an increasing number of fresh bodies; use might as well be made of them. Why invert the whole system in such a curious fashion and view an entire culture as the epi-phenomenon of an unusual way to beef up the meat supply. Spandrels do not exist to house the evangelists. Moreover, as Sahlins argues, it is not even clear that human sacrifice was an adaptation at all. Human cultural practices can be orthogenetic and drive toward extinction in ways that Darwinian processes, based on genetic selection, cannot. Since each new monarch had to outdo his predecessor in even more elaborate and copious sacrifice, the practice was beginning to stretch resources to the breaking point. It would not have been the first time that a human culture did itself in. And, finally, many experts doubt Harner's premise in the first place (Ortiz de Montellano, 1978). They argue that other sources of protein were not in short supply, and that a practice awarding meat only to privileged people who had enough anyway, and who used bodies so inefficiently (only the limbs were consumed, and partially at that) represents a mighty poor way to run a butchery.

We deliberately chose non-biological examples in a sequence running from remote to more familiar: architecture to anthropology. We did this because the primacy of architectural constraint and the epiphenomenal nature of adaptation are not obscured by our biological prejudices in these examples. But we trust that the message for biologists will not go unheeded: if these had been biological systems, would we not, by force of habit, have regarded the epiphenomenal adaptation as primary and tried to build the whole structural system from it?

2. The adaptationist programme

We wish to question a deeply engrained habit of thinking among students of evolution. We call it the adaptationist programme, or the Panglossian paradigm. It is rooted in a notion popularized by A.R. Wallace and A. Weismann, (but not, as we shall see, by Darwin) toward the end of the nineteenth century: the near omnipotence of natural selection in forging organic design and fashioning the best among possible worlds. This programme regards natural selection as so powerful and the constraints upon it so few that direct production of adaptation through its operation becomes the primary cause of nearly all organic form, function, and behavior. Constraints upon the pervasive power of natural selection are recognized of course (phyletic inertia primarily among them, although immediate architectural constraints, as discussed in the last section, are rarely acknowledged). But they are usually dismissed as unimportant or else, and more frustratingly, simply acknowledged and then not taken to heart and invoked.

Studies under the adaptationist programme generally proceed in two steps:

(1) An organism is atomized into "traits" and these traits are explained as structures optimally designed by natural selection for their functions. For lack of space, we must omit an extended discussion of the vital issue "What is a trait?" Some evolutionists may regard this as a trivial, or merely a semantic problem. It is not. Organisms are integrated entities, not collections of discrete objects. Evolutionists have often been led astray by inappropriate atomization, as D'Arcy Thompson (1942) loved to point out. Our favorite example involves the human chin (Gould, 1977, pp. 381-382; Lewontin, 1978). If we regard the chin as a "thing," rather than as a product of interaction between two growth fields (alveolar and mandibular), then we are led to an interpretation of its origin (recapitulatory) exactly opposite to the one now generally favored (neotenic).

(2) After the failure of part-by-part optimization, interaction is acknowledged via the dictum that an organism cannot optimize each part without imposing expenses on others. The notion of "trade-off' is introduced, and organisms are interpreted as best compromises among competing demands. Thus interaction among parts is retained completely within the adaptationist programme. Any sub-optimality of a part is explained as its contribution to the best possible design for the whole. The notion that sub-optimality might represent anything other than the immediate work of natural selection is usually not entertained. As Dr. Pangloss said in explaining to Candide why he suffered from venereal disease: "It is indispensable in this best of worlds. For if Columbus, when visiting the West Indies, had not caught this disease, which poisons the source of generation, which frequently even hinders generation, and is clearly opposed to the great end of Nature, we should have neither chocolate nor cochineal." The adaptationist programme is truly Panglossian. Our world may not be good in an abstract sense, but it is the very best we could have. Each trait plays its part and must be as it is.

At this point, some evolutionists will protest that we are caricaturing their view of adaptation. After all, do they not admit genetic drift, allometry, and a variety of reasons for non-adaptive evolution? They do, to be sure, but we make a different point. In natural history, all possible things happen sometimes; you generally do not support your favored phenomenon by declaring rivals impossible in theory. Rather, you acknowledge the rival but circumscribe its domain of action so narrowly that it cannot have any importance in the affairs of nature. Then, you often congratulate yourself for being such an undogmatic and ecumenical chap. We maintain that alternatives to selection for best overall design have generally been relegated to unimportance by this mode of argument. Have we not all heard the catechism about genetic drift: it can only be important in populations so small that they are likely to become extinct before playing any sustained evolutionary role (but see Lande, 1976).

The admission of alternatives in principle does not imply their serious consideration in daily practice. We all say that not everything is adaptive; yet, faced with an organism, we tend to break it into parts and tell adaptive stories as if trade-offs among competing, well designed parts were the only constraint upon perfection for each trait. It is an old habit. As Romanes complained about A.R. Wallace in 1900: "Mr. Wallace does not expressly maintain the abstract impossibility of laws and causes other than those of utility and natural selection... Nevertheless, as he nowhere recognizes any other law or cause... he practically concludes that, on inductive or empirical grounds, there is no such other law or cause to be entertained. The adaptationist programme can be traced through common styles of argument. We illustrate just a few; we trust they will be recognized by all:

(1) If one adaptive argument fails, try another. Zig-zag commissures of clams and brachiopods, once widely regarded as devices for strengthening the shell, become sieves for restricting particles above a given size (Rudwick, 1964). A suite of external structures (horns, antlers, tusks) once viewed as weapons against predators, become symbols of intra-specific competition among males (Davitashvili, 1961). The eskimo face, once depicted as "cold engineered" (Coon, et al., 1950), becomes an adaptation to generate and withstand large masticatory forces (Shea, 1977). We do not attack these newer interpretations; they may all be right. We do wonder, though, whether the failure of one adaptive explanation should always simply inspire a search for another of the same general form, rather than a consideration of alternatives to the proposition that each part is "for" some specific purpose.

(2) If one adaptive argument fails, assume that another must exist; a weaker version of the first argument. Costa & Bisol (1978), for example, hoped to find a correlation between genetic polymorphism and stability of environment in the deep sea, but they failed. They conclude (1978, pp. 132, 133): "The degree of genetic polymorphism found would seem to indicate absence of correlation with the particular environmental factors which characterize the sampled area. The results suggest that the adaptive strategies of organisms belonging to different phyla are different."

(3) In the absence of a good adaptive argument in the first place, attribute failure to imperfect understanding of where an organism lives and what it does. This is again an old argument. Consider Wallace on why all details of color and form in land snails must be adaptive, even if different animals seem to inhabit the same environment (1899, p. 148): "The exact proportions of the various species of plants, the numbers of each kind of insect or of bird, the peculiarities of more or less exposure to sunshine or to wind at certain critical epochs, and other slight differences which to us are absolutely immaterial and unrecognizable, may be of the highest significance to these humble creatures, and be quite sufficient to require some slight adjustments of size, form, or color, which natural selection will bring about."

(4) Emphasize immediate utility and exclude other attributes of form. Fully half the explanatory information accompanying the full-scale Fiberglass Tyrannosaurus at Boston's Museum of Science reads: "Front legs a puzzle: how Tyrannosaurus used its tiny front legs is a scientific puzzle; they were too short even to reach the mouth. They may have been used to help the animal rise from a lying position." (We purposely choose an example based on public impact of science to show how widely habits of the adaptationist programme extend. We are not using glass beasts as straw men; similar arguments and relative emphases, framed in different words, appear regularly in the professional literature.) We don't doubt that Tyrannosaurus used its diminutive front legs for something. If they had arisen de novo, we would encourage the search for some immediate adaptive reason. But they are, after all, the reduced product of conventionally functional homologues in ancestors (longer limbs of allosaurs, for example). As such, we do not need an explicitly adaptive explanation for the reduction itself. It is likely to be a developmental correlate of allometric fields for relative increase in head and hindlimb size. This non-adaptive hypothesis can be tested by conventional allometric methods (Gould, 1974, in general; Lande, 1978, on limb reduction) and seems to us both more interesting and fruitful than untestable speculations based on secondary utility in the best of possible worlds. One must not confuse the fact that a structure is used in some way (consider again the spandrels, ceiling spaces, and Aztec bodies) with the primary evolutionary reason for its existence and conformation.

3. Telling Stories

‘All this is a manifestation of the rightness of things, since if there is a volcano at Lisbon it could not be anywhere else, for it is impossible for things not to be where they are, because everything is for the best’. [Dr. Pangloss on the great Lisbon earthquake of 1755, in which up to 50,000 people lost their lives].

We would not object so strenuously to the adaptationist programme if its invocation, in any particular case, could lead in principle to its rejection for want of evidence. We might still view it as restrictive and object to its status as an argument of first choice. But if it could be dismissed after failing some explicit test, then alternatives would get their chance. Unfortunately, a common procedure among evolutionists does not allow such definable rejection for two reasons. First, the rejection of one adaptive story usually leads to its replacement by another, rather than to a suspicion that a different kind of explanation might be required. Since the range of adaptive stories is as wide as our minds are fertile, new stones can always be postulated. And if a story is not immediately available, one can always plead temporary ignorance and trust that it will be forthcoming, as did Costa & Bisol (1978), cited above. Secondly, the criteria for acceptance of a story are so loose that many pass without proper confirmation. Often, evolutionists use consistency with natural selection as the sole criterion and consider their work done when they concoct a plausible story. But plausible stories can always be told. The key to historical research lies in devising criteria to identify proper explanations among the substantial set of plausible pathways to any modern result.

We have, for example (Gould, 1978) criticized Barash's (1976) work on aggression in mountain bluebirds for this reason. Barash mounted a stuffed male near the nests of two pairs of bluebirds while the male was out foraging. He did this at the same nests on three occasions at ten-day intervals: the first before eggs were laid, the last two afterwards. He then counted aggressive approaches of the returning male toward the model and the female. At time one, aggression was high toward the model and lower toward females but substantial in both nests. Aggression toward the model declined steadily for times two and three and plummeted to near zero toward females. Barash reasoned that this made evolutionary sense, since males would be more sensitive to intruders before eggs were laid than afterward (when they can have some confidence that their genes are inside). Having devised this plausible story, he considered his work as completed (1976, pp. 1099, 1100):

# The results are consistent with the expectations of evolutionary theory. Thus aggression toward an intruding male (the model) would clearly be especially advantageous early in the breeding season, when territories and nests are normally defended... The initial aggressive response to the mated female is also adaptive in that, given a situation suggesting a high probability of adultery (i.e., the presence of the model near the female) and assuming that replacement females are available, obtaining a new mate would enhance the fitness of males... The decline in male-female aggressiveness during incubation and fledgling stages could be attributed to the impossibility of being cuckolded after the eggs have been laid... The results are consistent with an evolutionary interpretation.

They are indeed consistent, but what about an obvious alternative, dismissed without test by Barash? Male returns at times two and three, approaches the model, tests it a bit, recognizes it as the same phony he saw before, and doesn't bother his female. Why not at least perform the obvious test for this alternative to a conventional adaptive story: expose a male to the model for the first time after the eggs are laid?

After we criticized Barash's work, Morton et al. (1978) repeated it, with some variations (including the introduction of a female model), in the closely related eastern bluebird Sialia sialis. "We hoped to confirm", they wrote, that Barash's conclusions represent "a widespread evolutionary reality, at least within the genus Sialia. Unfortunately, we were unable to do so." They found no "anti-cuckoldry" behavior at all: males never approached their females aggressively after testing the model at any nesting stage. Instead, females often approached the male model and, in any case, attacked female models more than males attacked male models. "This violent response resulted in the near destruction of the female model after presentations and its complete demise on the third, as a female flew off with the model's head early in the experiment to lose it for us in the brush" (1978, p. 969). Yet, instead of calling Barash's selected story into question, they merely devise one of their own to render both results in the adaptationist mode. Perhaps, they conjecture, replacement females are scarce in their species and abundant in Barash's. Since Barash's males can replace a potentially "unfaithful" female, they can afford to be choosy and possessive. Eastern bluebird males are stuck with uncommon mates and had best be respectful. They conclude: "If we did not support Barash's suggestion that male bluebirds show anticuckoldry adaptations, we suggest that both studies still had 'results that are consistent with the expectations of evolutionary theory' (Barash 1976, p. 1099), as we presume any careful study would." But what good is a theory that cannot fail in careful study (since by 'evolutionary theory', they clearly mean the action of natural selection applied to particular cases, rather than the fact of transmutation itself)?

4. The Master's Voice Re-examined

Since Darwin has attained sainthood (if not divinity) among evolutionary biologists, and since all sides invoke God's allegiance, Darwin has often been depicted as a radical selectionist at heart who invoked other mechanisms only in retreat, and only as a result of his age's own lamented ignorance about the mechanisms of heredity. This view is false. Although Darwin regarded selection as the most important of evolutionary mechanisms (as do we), no argument from opponents angered him more than the common attempt to caricature and trivialize his theory by stating that it relied exclusively upon natural selection. In the last edition of the Origin, he wrote (1872, p. 395):

# As my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position-namely at the close of the introduction-the following words: "I am convinced that natural selection has been the main, but not the exclusive means of modification." This has been of no avail. Great is the power of steady misinterpretation.

Romanes, whose once famous essay (1900) on Darwin's pluralism versus the panselectionism of Wallace and Weismann deserves a resurrection, noted of this passage (1900, p. 5): "In the whole range of Darwin's writings there cannot be found a passage so strongly worded as this: it presents the only note of bitterness in all the thousands of pages which he has published." Apparently, Romanes did not know the letter Darwin wrote to Nature in 1880, in which he castigated Sir Wyville Thomson for caricaturing his theory as panselectionist (1880, p. 32):

# I am sorry to find that Sir Wyville Thomson does not understand the principle of natural selection... If he had done so, he could not have written the following sentence in the Introduction to the Voyage of the Challenger: "The character of the abyssal fauna refuses to give the least support to the theory which refers the evolution of species to extreme variation guided only by natural selection." This is a standard of criticism not uncommonly reached by theologians and metaphysicians when they write on scientific subjects, but is something new as coming from a naturalist ... Can Sir Wyville Thomson name any one who has said that the evolution of species depends only on natural selection? As far as concerns myself, I believe that no one has brought forward so many observations on the effects of the use and disuse of parts, as I have done in my "Variation of Animals and Plants under Domestication"; and these observations were made for this special object. I have likewise there adduced a considerable body of facts, showing the direct action of external conditions on organisms.

We do not now regard all of Darwin's subsidiary mechanisms as significant or even valid, though many, including direct modification and correlation of growth, are very important. But we should cherish his consistent attitude of pluralism in attempting to explain Nature's complexity.

5. A Partial Typology of Alternatives to the Adaptationist Programme

In Darwin's pluralistic spirit, we present an incomplete hierarchy of alternatives to immediate adaptation for the explanation of form, function, and behavior.

(1) No adaptation and no selection at all. At present, population geneticists are sharply divided on the question of how much genetic polymorphism within populations and how much of the genetic differences between species is, in fact, the result of natural selection as opposed to purely random factors. Populations are finite in size, and the isolated populations that form the first step in the speciation process are often founded by a very small number of individuals. As a result of this restriction in population size, frequencies of alleles change by genetic drift, a kind of random genetic sampling error. The stochastic process of change in gene frequency by random genetic drift, including the very strong sampling process that goes on when a new isolated population is formed from a few immigrants, has several important consequences. First, populations and species will become genetically differentiated, and even fixed for different alleles at a locus in the complete absence of any selective force at all.

Secondly, alleles can become fixed in a population in spite of natural selection. Even if an allele is favored by natural selection, some proportion of populations, depending upon the product of population size N and selection intensity s, will become homozygous for the less fit allele because of genetic drift. If N*s is large, this random fixation for unfavorable alleles is a rare phenomenon, but if selection coefficients are on the order of the reciprocal of population size (N*s = 1) or smaller, fixation for deleterious alleles is common. if many genes are involved in influencing a metric character like shape, metabolism, or behavior, then the intensity of selection on each locus will be small and N*s per locus may be small. as a result, many of the loci may be fixed for non-optimal alleles.

Thirdly, new mutations have a small chance of being incorporated into a population, even when selectively favored. Genetic drift causes the immediate loss of most new mutations after their introduction. With a selection intensity s, a new favorable mutation has a probability of only 2s of ever being incorporated. Thus one cannot claim that, eventually, a new mutation of just the right sort for some adaptive argument will occur and spread. "Eventually" becomes a very long time if only one in 1,000 or one in 10,000 of the "right" mutations that do occur ever get incorporated in a population.

(2) No adaptation and no selection on the part at issue; form of the part is a correlated consequence of selection directed elsewhere. Under this important category, Darwin ranked his "mysterious" laws of the "correlation of growth." Today, we speak of pleiotropy, allometry, "material compensation"‚(Rensch, 1959, pp. 179-187) and‚ mechanically forced correlations in D'Arcy Thompson's sense (1942; Gould 1971). Here we come face to face with organisms as integrated wholes, fundamentally not decomposable into independent and separately optimized parts.

Although allometric patterns are as subject to selection as static morphology itself (Gould, 1966), some regularities in relative growth are probably not under immediate adaptive control. For example, we do not doubt that the famous 0.66 interspecific allometry of brain size in all major vertebrate groups represents a selected "design criterion," though its significance remains elusive (Jerison, 1973). It is too repeatable across too wide a taxonomic range to represent much else than a series of creatures similarly well designed for their different sizes. But another common allometry, the 0.2 to 0.4 intra-specific scaling among homeothermic adults differing in body size, or among races within a species, probably does not require a selectionist story, though many, including one of us, have tried to provide one (Gould, 1974). R. Lande (personal communication) has used the experiments of Falconer (1973) to show that selection upon body size alone yields a brain-body slope across generations of 0.35 in mice. More compelling examples abound in the literature on selection for altering the timing of maturation (Gould, 1977). At least three times in the evolution of arthropods (mites, flies, and beetles), the same complex adaptation has evolved, apparently for rapid turnover of generations in strongly r-selected feeders on super-abundant but ephemeral fungal resources: females reproduce as larvae and grow the next generation within their bodies. Offspring eat their mother from inside and emerge from her hollow shell, only to be devoured a few days later by their own progeny. It would be foolish to seek adaptive significance in paedomorphic morphology per se; it is primarily a byproduct of selection for rapid cycling of generations. In more interesting cases, selection for small size (as in animals of the interstitial fauna) or rapid maturation (dwarf males of many crustaceans) has occurred by progenesis (Gould, 1977, pp. 324-336), and descendant adults contain a mixture of ancestral juvenile and adult features. Many biologists have been tempted to find primary adaptive meaning for the mixture, but it probably arises as a by-product of truncated maturation, leaving some features "behind" in the larval state, while allowing others, more strongly correlated with sexual maturation, to retain the adult configuration of ancestors.

(3) The de-coupling of selection and adaptation.

(i) Selection without adaptation. Lewontin (1979) has presented the following hypothetical example: "A mutation which doubles the fecundity of individuals will sweep through a population rapidly. If there has been no change in efficiency of resource utilization, the individuals will leave no more offspring than before, but simply lay twice as many eggs, the excess dying because of resource limitation. In what sense are the individuals or the population as a whole better adapted than before? Indeed, if a predator on immature stages is led to switch to the species now that immatures are more plentiful, the population size may actually decrease as a consequence, yet natural selection at all times will favour individuals with higher fecundity."

(ii) Adaptation without selection. Many sedentary marine organisms, sponges and corals in particular, are well adapted to the flow regimes in which they live. A wide spectrum of "good design" may be purely phenotypic in origin, largely induced by the current itself. (We may be sure of this in numerous cases, when genetically identical individuals of a colony assume different shapes in different microhabitats.) Larger patterns of geographic variation are often adaptive and purely phenotypic as well. Sweeney and Vannote (1978), for example, showed that many hemi-metabolous aquatic insects reach smaller adult size with reduced fecundity when they grow at temperatures above and below their optima. Coherent, climatically correlated patterns in geographic distribution for these insects-so often taken as a priori signs of genetic adaptation may simply reflect this phenotypic plasticity.

"Adaptation" -- the good fit of organisms to their environment -- can occur at three hierarchical levels with different causes. It is unfortunate that our language has focused on the common result and called all three phenomena "adaptation": the differences in process have been obscured, and evolutionists have often been misled to extend the Darwinian mode to the other two levels as well. First, we have what physiologists call "adaptation": the phenotypic plasticity that permits organisms to 'mold' their form to prevailing circumstances during ontogeny. Human "adaptations" to high altitude fall into this category (while others, like resistance of sickling heterozygotes to malaria, are genetic, and Darwinian). Physiological adaptations are not heritable, though the capacity to develop them presumably is. Secondly, we have a "heritable" form of non-Darwinian adaptation in humans (and, in rudimentary ways, in a few other advanced social species): cultural adaptation (with heritability imposed by learning). Much confused thinking in human sociobiology arises from a failure to distinguish this mode from Darwinian adaptation based on genetic variation. Finally, we have adaptation arising from the conventional Darwinian mechanism of selection upon genetic variation. The mere existence of a good fit between organism and environment is insufficient for inferring the action of natural selection.

(4) Adaptation and selection but no selective basis for differences among adaptations. Species of related organisms, or sub-populations within a species, often develop different adaptations as solutions to the same problem. When "multiple adaptive peaks" are occupied, we usually have no basis for asserting that one solution is better than another. The solution followed in any spot is a result of history; the first steps went in one direction, though others would have led to adequate prosperity as well. Every naturalist has his favorite illustration. In the West Indian land snail Cerion, for example, populations living on rocky and windy coasts almost always develop white, thick, and relatively squat shells for conventional adaptive reasons. We can identify at least two different developmental pathways to whiteness from the mottling of early whorls in all Cerion, two paths of thickened shells and three styles of allometry leading to squat shells. All 12 combinations can be identified in Bahamian populations, but would it be fruitful to ask why -- in the sense of optimal design rather than historical contingency -- Cerion from eastern Long Island evolved one solution, and Cerion from Acklins Island another?

(5) Adaptation and selection, but the adaptation is a secondary utilization of parts present for reasons of architecture, development or history. We have already discussed this neglected subject in the first section on spandrels, spaces, and cannibalism. If blushing turns out to be an adaptation affected by sexual selection in humans, it will not help us to understand why blood is red. The immediate utility of an organic structure often says nothing at all about the reason for its being.

6. Another, and Unfairly Maligned, Approach to Evolution

In continental Europe, evolutionists have never been much attracted to the Anglo-American penchant for atomizing organisms into parts and trying to explain each as a direct adaptation. Their general alternative exists in both a strong and a weak form. In the strong form, as advocated by such major theorists as Schindewolf (1950), Remane (1971), and Grassé (1977), natural selection under the adaptationist programme can explain superficial modifications of the Bauplan that fit structure to environment: why moles are blind, giraffes have long necks, and ducks webbed feet, for example. But the important steps of evolution, the construction of the Bauplan itself and the transition between Baupläne, must involve some other unknown, and perhaps "internal," mechanism. We believe that English biologists have been right in rejecting this strong form as close to an appeal to mysticism.

But the argument has a weaker -- and paradoxically powerful -- form that has not been appreciated, but deserves to be. It also acknowledges conventional selection for superficial modifications of the Bauplan. It also denies that the adaptationist programme (atomization plus optimizing selection on parts) can do much to explain Baupläne and the transitions between them. But it does not therefore resort to a fundamentally unknown process. It holds instead that the basic body plans of organisms are so integrated and so replete with constraints upon adaptation (categories 2 and 5 of our typology) that conventional styles of selective arguments can explain little of interest about them. It does not deny that change, when it occurs, may be mediated by natural selection, but it holds that constraints restrict possible paths and modes of change so strongly that the constraints themselves become much the most interesting aspect of evolution.

Rupert Riedl, the Austrian zoologist who has tried to develop this thesis for English audiences (1977 and 1975, translated into English by R. Jeffries in 1978) writes:

# The living world happens to be crowded by universal patterns of organization which, most obviously, find no direct explanation through environmental conditions or adaptive radiation, but exist primarily through universal requirements which can only be expected under the systems conditions of complex organization itself... This is not self-evident, for the whole of the huge and profound thought collected in the field of morphology, from Goethe to Remane, has virtually been cut off from modern biology. It is not taught in most American universities. Even the teachers who could teach it have disappeared.

Constraints upon evolutionary change may be ordered into at least two categories. All evolutionists are familiar with phyletic constraints, as embodied in Gregory's classic distinction (1936) between habitus and heritage. We acknowledge a kind of phyletic inertia in recognizing, for example, that humans are not optimally designed for upright posture because so much of our Bauplan evolved for quadrupedal life. We also invoke phyletic constraint in explaining why no mollusks fly in air and no insects are as large as elephants.

Developmental constraints, a subcategory of phyletic restrictions, may hold the most powerful rein of all over possible evolutionary pathways. In complex organisms, early stages of ontogeny are remarkably refractory to evolutionary change, presumably because the differentiation of organ systems and their integration into a functioning body is such a delicate process so easily derailed by early errors with accumulating effects. Von Baer's fundamental embryological laws (1828) represent little more than a recognition that early stages are both highly conservative and strongly restrictive of later development. Haeckel's biogenetic law, the primary subject of late nineteenth century evolutionary biology, rested upon a misreading of the same data (Gould, 1977). If development occurs in integrated packages and cannot be pulled apart piece by piece in evolution, then the adaptationist programme cannot explain the alteration of developmental programmes underlying nearly all changes of Bauplan.

The German paleontologist A. Seilacher, whose work deserves far more attention than it has received, has emphasized what he calls "bautechnischer," or architectural constraints (Seilacher, 1970). These arise not from former adaptations retained in a new ecological setting (phyletic constraints as usually understood), but as architectural restrictions that never were adaptations but rather were the necessary consequences of materials and designs selected to build basic Baupläne. We devoted the first section of this paper to nonbiological examples in this category. Spandrels must exist once a blueprint specifies that a dome shall rest on rounded arches. Architectural constraints can exert a far-ranging influence upon organisms as well. The subject is full of potential insight because it has rarely been acknowledged at all.

In a fascinating example, Seilacher (1972) has shown that the divaricate form of architecture occurs again and again in all groups of mollusks, and in brachiopods as well. This basic form expresses itself in a wide variety of structures: raised ornamental lines (not growth lines because they do not conform to the mantle margin at any time), patterns of coloration, internal structures in the mineralization of calcite and incised grooves. He does not know what generates this pattern and feels that traditional and nearly exclusive focus on the adaptive value of each manifestation has diverted attention from questions of its genesis in growth and also prevented its recognition as a general phenomenon. It must arise from some characteristic pattern of inhomogeneity in the growing mantle, probably from the generation of interference patterns around regularly spaced centers; simple computer simulations can generate the form in this manner (Waddington and Cowe, 1969). The general pattern may not be a direct adaptation at all.

Seilacher then argues that most manifestations of the pattern are probably non-adaptive. His reasons vary but seem generally sound to us. Some are based on field observations: color patterns that remain invisible because clams possessing them either live buried in sediments or remain covered with a periostracum so thick that the colors cannot be seen. Others rely on more general principles: presence only in odd and pathological individuals, rarity as a developmental anomaly, excessive variability compared with much reduced variability when the same general structure assumes a form judged functional on engineering grounds.

In a distinct minority of cases, the divaricate pattern becomes functional in each of the four categories. Divaricate ribs may act as scoops and anchors in burrowing (Stanley, 1970), but they are not properly arranged for such function in most clams. The color chevrons are mimetic in one species (Pteria zebra) that lives on hydrozoan branches; here the variability is strongly reduced. The mineralization chevrons are probably adaptive in only one remarkable creature, the peculiar bivalve Corculura cardissa (in other species they either appear in odd specimens or only as post-mortem products of shell erosion). This clam is uniquely flattened in an anterio-posterior direction. It lies on the substrate, posterior up. Distributed over its rear end are divaricate triangles of mineralization. They are translucent, while the rest of the shell is opaque. Under these windows dwell endosymbiotic algae!

All previous literature on divaricate structure has focused on its adaptive significance (and failed to find any in most cases). But Seilacher is probably right in representing this case as the spandrels, ceiling holes, and sacrificed bodies of our first section. The divaricate pattern is a fundamental architectural constraint. Occasionally, since it is there, it is used to beneficial effect. But we cannot understand the pattern or its evolutionary meaning by viewing these infrequent and secondary adaptations as a reason for the pattern itself.

Galton (1909, p. 257) contrasted the adaptationist programme with a focus on constraints and modes of development by citing a telling anecdote about Herbert Spencer's fingerprints:

# Much has been written, but the last word has not been said, on the rationale of these curious papillary ridges; why in one man and in one finger they form whorls and in another loops. I may mention a characteristic anecdote of Herbert Spencer in connection with this. He asked me to show him my Laboratory and to take his prints, which I did. Then I spoke of the failure to discover the origin of these patterns, and how the fingers of unborn children had been dissected to ascertain their earliest stages, and so forth. Spencer remarked that this was beginning in the wrong way; that I ought to consider the purpose the ridges had to fulfill, and to work backwards. Here, he said, it was obvious that the delicate mouths of the sudorific glands required the protection given to them by the ridges on either side of them, and therefrom he elaborated a consistent and ingenious hypothesis at great length. I replied that his arguments were beautiful and deserved to be true, but it happened that the mouths of the ducts did not run in the valleys between the crests, but along the crests of the ridges themselves.

We feel that the potential rewards of abandoning exclusive focus on the adaptationist programme are very great indeed. We do not offer a council of despair, as adaptationists have charged; for non-adaptive does not mean non-intelligible. We welcome the richness that a pluralistic approach, so akin to Darwin's spirit, can provide. Under the adaptationist programme, the great historic themes of developmental morphology and Bauplan were largely abandoned: for if selection can break any correlation and optimize parts separately, then an organism's integration counts for little. Too often, the adaptationist programme gave us an evolutionary biology of parts and genes, but not of organisms. It assumed that all transitions could occur step by step and underrated the importance of integrated developmental blocks and pervasive constraints of history and architecture. A pluralistic view could put organisms, with all their recalcitrant yet intelligible complexity, back into evolutionary theory.


Baer, K. E. von, 1828, Entwicklungsgeschichte der Tiere, Konigsberg: Borntrager.

Barash, D. P., 1976, Male response to apparent female adultery in the mountain bluebird: an evolutionary interpretation, Am. Nat. 110: 1097-1101.

Coon, C.S., Garn, S.M., and Birdsell, J.B., 1950, Races, Springfield Oh., C. Thomas.

Costa, R., and Bisol, P. M., 1978, Genetic Variability In Deep-Sea Organisms, Biol. Bull., 155: 125- 133.

Darwin, C. 1872, The Origin Of Species, London, John Murray.

______, 1880, Sir Wyville Thomson and Natural Selection, Nature, London, 23: 32.

Davitashvili, L.S. Teoriya Polovogo Otbora [Theory Of Sexual Selection], Moscow, Akademii Nauk.

Falconer, D.S., 1973, Replicated Selection For Body Weight In Mice, Genet. Res., 22: 291-321.

Galton, F, 1909, Memories of my Life, London, Methuen.

Gould, S. J., 1966, Allometry and Size in Ontogeny and Phylogeny, Biol. Rev., 41: 587-640.

_____, 1971, D'Arcy Thompson and The Science Of Form, New Literary Hist., 2, No. 2, 229-258.

_____, 1974, Allometry in Primates, with Emphasis on Scaling and the Evolution of the Brain. In Approaches To Primate Paleobiology, Contrib. Primatol, 5: 244-292.

_____, 1977, Ontogeny And Phylogeny, Cambridge, Ma., Belknap Press.

_____, 1978, Sociobiology: The Art of Storytelling, New Scient., 80: 530-533.

Grasse, P.P., 1977, Evolution of Living Organisms, New York, Academic Press.

Gregory, W. K. 1936, Habitus Factors In The Skeleton Fossil And Recent Mammals, Proc. Am. Phil. Soc., 76: 429-444.

Hamer, M., 1977, The Ecological Basis For Aztec Sacrifice. Am. Ethnologist, 4: 117-135.

Jenson, H.J., 1973, Evolution Of The Brain And Intelligence, New York, Academic Press.

Lande, R., 1976, Natural Selection And Random Genetic Drift In Phenotypic Evolution, Evolution, 30: 314-334.

_____, 1978, Evolutionary Mechanisms Of Limb Loss In Tetrapods, Evolution, 32: 73-92.

Lewontin, R.C., 1978, Adaptation, Scient. Am., 239 (3): 156-169.

_______, 1979, Sociobiology As An Adaptationist Program, Behav. Sci., 24: 5-14.

Morton, E.S., Geitgey, M.S., And Mcgrath, S., 1978, On Bluebird 'Responses To Apparent Female Adultery'. Am. Nat., 112: 968-971.

Ortiz De Montellano, B.R., 1978, Aztec Cannibalism: An Ecological Necessity? Science, 200: 611- 617.

Remane, A., 1971, Die Grundlagen Des Naturlichen Systems Der Vergleichenden Anatomie Und Der Phylogenetik. Konigstein-Taunus: Koeltz.

Rensch, B., 1959, Evolution Above The Species Level. New York, Columbia University Press.

Riedl, R., 1975, Die Ordnung Des Lebendigen, Hamburg, Paul Parey, Tr. R.P.S. Jefferies, Order In Living Systems: A Systems Analysis Of Evolution, New York, Wiley, 1978.

_____, 1977, A Systems-Analytical Approach To Macro-Evolutionary Phenomena, Q. Rev. Biol., 52: 351-370.

Romanes, G. 1., 1900, The Darwinism Of Darwin And Of The Post-Darwinian Schools. In Darwin, And After Darwin, Vol. 2, New Edn., London, Longmans, Green And Co.

Rudwiek, M.J.S., 1964, The Function Of Zig-Zag Deflections In The Commissures Of Fossil Brachiopods, Palaeontology, 7: 135-171.

Sahlins, M., 1978, Culture As Protein And Profit, New York Review Of Books, 23: Nov., Pp. 45-53.

Schindewolf, O. H., 1950, Grundfragen der Palaontologie, Stuttgart, Schweizerbart.

Seilacher, A., 1970, Arbeitskonzept zur Konstruktionsmorphologie, Lethaia, 3: 393-396.

_______, 1972, Divaricate Patterns In Pelecypod Shells, Lethaig, 5: 325-343.

Shea, B. T., 1977, Eskimo Craniofacial Morphology, Cold Stress And The Maxillary Sinus, Am. J. Phys. Anthrop., 47: 289-300.

Stanley, S.M., 1970, Relation Of Shell Form To Life Habits In The Bivalvia (Mollusca). Mem. Geol. Soc. Am., No. 125, 296 Pp.

Sweeney, B.W., and Vannote, R.L., 1978, Size Variation And The Distribution Of Hemimetabolous Aquatic Insects: Two Thermal Equilibrium Hypotheses. Science, 200:444-446.

Thompson, D. W., 1942, Growth And Form, New York, Macmillan.

Waddington, C.H., And Cowe, J.R., 1969, Computer Simulation Of A Molluscan Pigmentation Pattern, J. Theor. Biol., 25: 219-225.

Wallace, A.R., 1899, Darwinism, London, Macmillan.

Wilson, E. 0., 1978, On Human Nature, Cambridge, Ma., Harvard University Press.

Source: [accessed 30 Dec 2008]